Short-patch reverse transcription in Escherichia coli.

نویسندگان

  • D S Thaler
  • G Tombline
  • K Zahn
چکیده

Chimeras of RNA and DNA have distinctive physical and biological properties. Chimeric oligonucleotides that contained one, two or three ribonucleotides whose phosphodiester backbone was covalently continuous with DNA were synthesized. Site-directed mutagenesis was used to assess genetic information transfer from the ribonucleotide positions. Transfer was scored by the formation or reversion of an ochre site that also corresponded to a restriction cleavage site. This allowed physical as well as genetic assay of mutational events. Bases attached to the ribonucleotides were able to accurately direct the synthesis of progeny DNA. The results suggest that in vivo DNA polymerases utilize a "running start" on a DNA backbone to continue across a covalent backbone junction into a region of ribonucleotides and then back again onto a normal DNA backbone. The phenomenon is designated short-patch reverse transcription (SPRT) by analogy to short-patch mismatch correction and reverse transcription as the term is generally used. The possibility is considered that SPRT contributes to an unrecognized pathway of mutagenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Viable But Non-Culturable State of Escherichia coli O157:H7 Using Reverse Transcription PCR

Background and Aims: Many bacteria including Escherichia coli may enter into a viable but non-culturable (VBNC) state under unfavorable stresses, which are unable to be detected by culture-based methods. In this study, the use of Reverse Transcription PCR (RT-PCR) for detection of VBNC state of E. coli O157:H7 was investigated. Materials and Methods:  Escherichia. coli O157:H7 was inoculated i...

متن کامل

Rhizobium meliloti regulatory gene fixJ activates transcription of R. meliloti nifA and fixK genes in Escherichia coli.

When present in Escherichia coli on the multicopy expression vector pUC19, a Rhizobium meliloti regulatory gene, fixJ, belonging to a two-component regulatory system, activated the expression of two R. meliloti symbiotic genes, nifA and fixK. Primer extension by reverse transcription showed that FixJ stimulates nifA expression in E. coli by activating pnifA.

متن کامل

Mechanisms of dinucleotide repeat instability in Escherichia coli.

The high level of polymorphism of microsatellites has been used for a variety of purposes such as positional cloning of genes associated with diseases, forensic medicine, and phylogenetic studies. The discovery that microsatellites are associated with human diseases, not only as markers of risk but also directly in disease pathogenesis, has triggered a renewed interest in understanding the mech...

متن کامل

Very-short-patch repair in Escherichia coli requires the dam adenine methylase.

Strains of Escherichia coli which lack the dam-encoded adenine methylase are mutators due to a reduction in the efficiency of postreplication mismatch repair. In this study, we show that Dam(-) strains are also defective in very-short-patch repair, the system which corrects T/G mismatches arising from the deamination of 5-methylcytosine. This defect is associated with decreased levels of Vsr, t...

متن کامل

Reverse transcription-multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Vibrio cholerae O1, and Salmonella Typhi.

BACKGROUND Escherichia coli O157:H7, Vibrio cholerae O1, and Salmonella Typhi are pathogenic bacteria that can be found in contaminated water supplies throughout the world. No currently available assays can simultaneously detect and identify all three pathogens. Our aim was to develop a rapid and reliable technique for simultaneous detection of these pathogens. METHODS Four unique genes were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 140 3  شماره 

صفحات  -

تاریخ انتشار 1995